黄芪ISSR标记遗传多样性及其与主要药用成分的关联分析

孟祥善, 周玉梅, 代晓华, 刘萍

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (24) : 2060-2070.

PDF(1995 KB)
PDF(1995 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (24) : 2060-2070. DOI: 10.11669/cpj.2019.24.010
论著

黄芪ISSR标记遗传多样性及其与主要药用成分的关联分析

  • 孟祥善1,2, 周玉梅1,2, 代晓华2, 刘萍1,2*
作者信息 +

Genetic Diversity and Association Analysis between Medicinal Components and ISSR Markers in Astragali Radix

  • MENG Xiang-shan1,2, ZHOU Yu-mei1,2, DAI Xiao-hua2, LIU Ping1,2*
Author information +
文章历史 +

摘要

目的 为深入研究并充分利用中药材黄芪(Astragali Radix),寻找与有效成分表型性状相关联的分子标记。方法 利用ISSR分子标记技术对43份黄芪进行遗传多样性分析,用13个分子标记结果对供试材料做群体遗传结构分析,并在此基础上用 Tassel 2.1的 GLM对标记与表型性状进行关联分析。结果 43份黄芪间有一定的遗传多样性,遗传距离在0.050 6~0.743 8之间,平均遗传距离0.274 1;来自宁夏和甘肃的人工栽培黄芪与采自宁夏六盘山镇的野生黄芪亲缘关系较近,而No.340与其他黄芪的亲缘关系最远;43份黄芪多糖含量7.693~27.840 mg·g-1,总皂苷含量7.167~17.579 mg·g-1,总黄酮含量2.212~6.164 mg·g-1,甲苷含量6.070 ~107.920 μg·g-1;线性回归分析表明,总皂苷和总黄酮含量呈极显著正相关(r=0.650 5,P=2.3×10-6<0.01),但甲苷与总皂苷含量、与总黄酮以及多糖含量均无显著相关关系。通过群体遗传结构分析43份黄芪划分为4个亚群,以GLM模型分析发现,在P<0.01水平上,有13个ISSR标记共34个位点与多糖、总皂苷、总黄酮以及甲苷含量4个表型性状发生关联,各标记对表型变异的解释率在8.14%~51.39%。其中高阈值(P<1×10-5)下与甲苷含量相关联、解释率超过30%的位点有15个;与多糖含量相关联的位点1个,且解释率达到了51.38%。结论 研究结果为黄芪的鉴定、保护及分子标记辅助育种提供依据。

Abstract

OBJECTIVE To study and exploit Chinese medicine Astragali Radix, the molecular markers that relates to the phenotypic traits on medicinal components of Astragali Radix and would be detected. METHODS The genetic diversity of 43 Astragali Radix samples was analyzed with ISSR molecular marker technique and then the population genetic structure was studied through 13 selected markers. The association analysis between ISSR markers and 4 phenotypic traits of medicinal components were performed with GLM (general linear model) programs in Tassel 2.1. Certain genetic diversity was discovered among the 43 Astragali Radix samples. RESULTS The genetic distance varied between 0.050 6 and 0.743 8, with an average of 0.274 1. Moreover, the cultivated Astragali Radix from Ningxia and Gansu province closely related to the wild Astragali Radix collected from Liupanshan town in Ningxia. On the other hand, No. 340 had the farthest relationship with other Astragali Radix. The content of polysaccharide, total saponins, total flavonoids, and Astragaloside IV ranged between 7.693-27.840 mg·g-1, 7.167-17.579 mg·g-1, 2.212-6.164 mg·g-1 and 6.070-107.920 μg·g-1, respectively. Meanwhile, linear regression analysis indicated that there was a significant positive correlation between the content of the total saponins and that of flavonoids (r=0.650 5,P=2.3×10-6<0.01), while the content of astragaloside Ⅳ had no significant correlation with that of polysaccharide, total saponins and total flavonoids. The population genetic structural analysis showed that the 43 samples were divided into 4 subgroups. There were total of 34 locus in 13 ISSR markers significantly associated (P<0.01) with the content of polysaccharide,total saponins, flavonoids and astragaloside Ⅳ, and the rate of explanation on the phenotype of related marker ranged from 8.14% to 51.39%. Among the locus, 15 were related with astragaloside Ⅳ content at interpretation rates above 30%, 1 with polysaccharide content an interpretation rate reached as high as 51.39% with high threshold (P<1×10-5). CONCLUSION These results would provide supporting evidence for identification and protection of germplasm resources as well as molecular marker-assisted breeding.

关键词

黄芪 / 种质资源 / ISSR标记 / 有效成分 / 关联分析

Key words

Astragali Radix / germplasm resource / ISSR molecular markers / effective components / association analysis

引用本文

导出引用
孟祥善, 周玉梅, 代晓华, 刘萍. 黄芪ISSR标记遗传多样性及其与主要药用成分的关联分析[J]. 中国药学杂志, 2019, 54(24): 2060-2070 https://doi.org/10.11669/cpj.2019.24.010
MENG Xiang-shan, ZHOU Yu-mei, DAI Xiao-hua, LIU Ping. Genetic Diversity and Association Analysis between Medicinal Components and ISSR Markers in Astragali Radix[J]. Chinese Pharmaceutical Journal, 2019, 54(24): 2060-2070 https://doi.org/10.11669/cpj.2019.24.010
中图分类号: R282.5   

参考文献

[1] Editorial Committee of Flora of China. Flora Reipublicae Popularis Sinicae(40 volumes)(中国植物志.第四十卷)[M]. Beijing: Science Press, 1998:80-81.
[2] Ch.P(2010). Vol Ⅰ(中国药典2010年版.一部)[S]. 2010:283.
[3] ZHANG Y D, WANG Y L, SHENG J P, et al. Effects on blood pressure and inflammation of astragalus saponin 1, a principle isolated from Astragalus membranaceus Bge[J]. Acta Pharm Sin(药学学报),1984,19(5):333-337.
[4] YAN Y D,HUANG X J,YANG Y. Effect of astragaloside Ⅳ on changes of adiponectin and its receptor adipo R1 in injured myocardium in rats[J]. Chin Pharm J(中国药学杂志), 2014, 49(11):978-981.
[5] LU Z Q. Protective efect of hydroxysafflor yellow a combined with astragaloside Ⅳ on chronic kidney disease[J]. J Nanjing Univ Tradit Chin Med(南京中医药大学学报), 2018,34(6):589-592.
[6] XIA G Q, HAN X J.Effect of astragalus polysaccharide on cell proliferation and the relevant gene expression during senescence of zebrafish[J]. Chin Pharm J(中国药学杂志), 2012, 47(13):1039-1041.
[7] WANG T, WEI X J, WENG X G, et al. Effects of astragalus polysaccharides on theinsulin sensitivity in the fat rats[J]. Chin Pharm J(中国药学杂志), 2011, 46(3): 185-188.
[8] XUAN L Y, TAO X X, ZHAO Y J, et al. Effect of total flavonoids of astragalus on endoplasmic reticulum chaperone, calumenin and connecxin 43 in suckling mouse myocardium with myocarditis caused by coxsackievirus B3[J]. Chin J Appl Physiol(中国应用生理学杂志), 2016, 32(1):51-54.
[9] YUAN H, ZHANG S F, CHEN N, et al. Progress in application and biological activity of Radix Astragali in health foods[J]. Food Sci(食品科学), 2014, 35(15):330-334.
[10] NA H J,UM J Y,KIM S C, et al. Molecular discrimination of medicinal Astragali Radix by RAPD analysis[J].Immunopharmacol Immunotoxicol , 2004, 26(2): 265-272.
[11] YIP P Y,KWAN H S.Molecular identification of Astragalus membranaceus at the species and locality levels[J].J Ethnopharmacol, 2006, 106(2): 222-229.
[12] JIAO M L, LI Z Y, QIN X M, et al. Comparison between Astragalus membranaceus var. mongholicus and Hedysarum polybotrys based on ITS sequences and metabolomics[J]. Acta Pharm Sin(药学学报), 2015, 50 (12): 1625-1631.
[13] WANG X F, LIANG Y, HU Z L, et al. Study on genetic diversity of Astragalus membranaceus var. mongholicus populations in innormongolia[J]. Grassl China(中国草地学报), 2018,40(1): 42-48.
[14] GUO H Y, WANG W W, YU J, et al. DNA Barcoding provides distinction between Radix Astragali and its adulterants [J]. Sci China Life Sci(中国科学·生命科学),2010, 53(8): 992-999.
[15] NORDBORG M. Linkage disequilibrium, gene trees and selfing: An ancestral recombination graph with partial self-fertilization[J]. Genets Soc Am, 2000, 154: 923-929.
[16] FLINT-GARCIA S A, THORNSBERRY J M, BUCKLER Ⅳ E S. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol, 2003, 54: 357-374.
[17] GUPTA P K, RUSTGI S, KULWAL P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Mol Biol, 2005, 57: 461-485.
[18] HANSEN M, KRAFT T, GANESTAM S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genet Res, 2001, 77(1): 61-66.
[19] JUN T H, VAN K, KIM M Y, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J]. Euphytica, 2008, 162: 179-191.
[20] LAI Y, WANG P X, WANG H J, et al. Genetic diversity and association analysis using SSR markers in barley[J]. Sci Agric Sin(中国农业科学),2013, 46(2): 233-242.
[21] LIU J R. Genetic diversity analysis of Sophora alopecuroides and the correlation analysis with matrine[D].Yinchuan: Ningxia University, 2013.
[22] MENG X S, DAI X H, LIU P, et al. Study on genetic diversity of ITS sequence in Stellaria dichotoma var. lacceolata[J]. J Chin Med Mater(中药材),2018, 41(1):55-59.
[23] ZHANG R. Analysis on genetic diversity of Radix Astragali by ISSR marker[D]. Jinzhong: Shanxi Agricultural University, 2014.
[24] ZOU Q. Guidance of Plant Physiology Experiments(植物生理学实验指导)[M]. Beijing: China Agriculture Press, 2000: 110-111.
[25] EVANNO G,REGNAUT S,GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
[26] YAN S, REN W C, LIU Z D, et al. Correlation analysis of levels of astraglus polysaccharides, saponin and flavone[J]. West J Tradit Chin Med(西部中医药), 2016,29(12):29-31.
[27] ZHANG Y H, ZHANG L M, MA W, et al. Content determination of astragalus polysaccharide from astragalus in different regions [J]. Inf Tradit Chin Med(中医药信息),2013, 30(5): 69-71.
[28] JIANG Y, CHAO R B. Comparison of contents of astragaloside Ⅳ and total saponins in Astragalus membranaceus[J]. West China J Pharm Sci(华西药学杂志), 2007,22(3):322-324.
[29] GAO S Y, LI K, ZHANG X, et al. Quality comparison study between wild and cultivated Astragali Radix based on absolute growth years[J]. Chin Tradit Herb Drugs(中草药), 2018,49(10):2248-2257.
[30] YAN J J, YAO M, LIAO G Z, et al. Determination of astragaloside Ⅳ in Astragalus membranaceus var. mongholicus with different growth years by HPLC[J]. Technol Innov Appl(科技创新与应用),2017, (28):85-87.
[31] MACKAY I, POWELL W. Methods for linkage disequilibrium mapping in crops[J]. Trends Plant Sci, 2007, 12(2): 57-63.
[32] SUN C W, ZHANG F Y, CHEN F, et al. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China[J]. Plant Biotechnol J,2017, 15: 953-969.
[33] ZHANG G H, GAO M G, LI S S, et al. Association analysis of yield traits with molecular markers in Huang-Huai river valley winter wheat region, China[J]. Acta Agron Sin(作物学报),2013,39(7): 1187-1199.

基金

宁夏科技支撑计划项目资助(2014[327]01-05)
PDF(1995 KB)

Accesses

Citation

Detail

段落导航
相关文章

/